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4. NEW SAMPLING ALGORITHM
1 . MOTIVATION 2 BAC KG ROU N D Main Contribution: New MCCFR sampling algorithm, Average Strategy

Sampling, that samples a subset of the current player's actions according

Counterfactual Regret Minimization (CFR) is a state-of-the-art iterative to the player's average strategy.

algorithm for computing an approximate Nash equilibrium.
Example: Kuhn Poker (player 1 dealt Queen) J PULINg PP 1 Prob[sample action a] &~ max{J, 53“(@}

£ — “Vanilla” CFR (Original Version) Monte Carlo CFR (MCCFR): External Sampling /

Z.1/6 1/6 &, & & nKevi exploration parameter ¢
Compute [Zinkevich et al., NIPS 2007] [Lanctot et al., NIPS 2009] P P
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check - even faster iterations
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a8 HE JE - BE 5. EXPERIMENTAL RESULTS

We seek a Nash equilibrium profile (or as close to Nash as possible) Traverse entire tree each iteration. Only traverse a sampled subtree.
o | - | | | - slow iterations - fast iterations Chance Sampling | External Sampling | Outcome Sampling | Average Strategy
Applications: Airport security, insulin scheduling for diabetes patients, - few iterations required - many iterations required (CS) (ES) (OS) Sampling (AS)

beat humans at Texas Hold'em poker. [Zinkevich et al., NIPS 2007] [Lanctot et al., NIPS 2009] [Lanctot et al., NIPS 2009] 5 — 0.05
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NOTATION AND DEFINITIONS Regret Bound: R;-_T < ZR%T’JF(I) < O\/T  [Zinkevich et al., NIPS 2007

I1€l;

Goal: Find solutions to large 2-player zero-sum imperfect information games.

Output:

, the average strategy profile.

Opponent

o = (01, 02): strategy profile, a function mapping each information set to a

g P 9 . R RI ¢
probability distribution over actions Fact: Tl , ; < 5 N 5T is an €-Nash equilibrium.
u;(0): expected utility for player i, assuming players play according to o Chance

maXy/, Up(01,05) + max,s ui(oy, o2) |

2
maximum amount o loses to a worst-case opponent 2-Round No Limit Hold'em - Used 5 “bucket” card abstraction (but no betting abstraction).

A strategy profile o is an e -Nash equilibrium if exploitability () < € 3_ NEW THEORETICAL RESU LT rralr | 104: k=00 - 0.16 [ ZOSkS4O

exploitability (0) =
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R = max Z ui (o1, 05) — uq (0, 05): regret for player 1 after 7T iterations
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Abstract game exploitability (mbb/g)

7, : set of information sets for player i

Ri(I) = msxzﬂw (11(1(1—)> 02 | 1) = (01,05 | 1)) - Let o7 be a best response to g’ :

t=1 . . . . .
counterfactual regret for player 1 at information set 1 | | K actlon_s
K = # chips

Abstract game exploitability (mbb/g) / &

Nodes Visited Game s1ze (# information sets)
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RESEARCH SUPPORTED BY: New Regret Bound: R} = » 77 (I)R](I) < C*VT,C" < C.

I€T;
where 77 (I) is the probability o plays to reach I.

Bluff 1 die vs. 1 die (n = 2) 2 dice vs. 1 die (n = 3)
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' Innovates Observation 1: Regret only depends on counterfactual regret B! (I) at
information sets / that o plays to reach.
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scuM G n = total number of dice Nodes Visited Nodes Visited

Exploitability




