Efficient Monte Carlo Counterfactual Regret Minimization in Games with Many Player Actions **Richard Gibson, Neil Burch, Marc Lanctot, and Duane Szafron** Neural Information

1. MOTIVATION

Goal: Find solutions to large 2-player zero-sum imperfect information games. Example: Kuhn Poker (player 1 dealt Queen)

We seek a **Nash equilibrium profile** (or as close to Nash as possible)

Applications: Airport security, insulin scheduling for diabetes patients, beat humans at Texas Hold'em poker.

NOTATION AND DEFINITIONS

 $\sigma = (\sigma_1, \sigma_2)$: strategy profile, a function mapping each information set to a probability distribution over actions

 $u_i(\sigma)$: expected utility for player *i*, assuming players play according to σ

exploitability
$$(\boldsymbol{\sigma}) = \frac{\max_{\boldsymbol{\sigma}'_2} u_2(\boldsymbol{\sigma}_1, \boldsymbol{\sigma}'_2) + \max_{\boldsymbol{\sigma}'_1} u_1(\boldsymbol{\sigma}'_1, \boldsymbol{\sigma}_2)}{2}$$

maximum amount σ loses to a worst-case opponent

A strategy profile σ is an ϵ -Nash equilibrium if exploitability $(\sigma) \leq \epsilon$

C: number of iterations $R_1^T = \max_{\sigma'} \sum u_1(\sigma'_1, \sigma^t_2) - u_1(\sigma^t_1, \sigma^t_2)$: regret for player 1 after T iterations \mathcal{I}_i : set of information sets for player *i*

 $R_1^T(I) = \max_a \sum \pi_{-i}^{\sigma^t}(I) \left(u_1(\sigma_{1(I \to a)}^t, \sigma_2^t \mid I) - u_1(\sigma_1^t, \sigma_2^t \mid I) \right) :$

counterfactual regret for player 1 at information set I

RESEARCH SUPPORTED BY:

Computing Science Department, University of Alberta, Canada Poster available on-line at http://cs.ualberta.ca/~rggibson/

3. NEW THEORETICAL RESULT

Let σ_i^* be a best response to $\overline{\sigma}_{-i}^T$:

Observation 1: Regret only depends on counterfactual regret $R_i^T(I)$ at information sets I that σ_i^* plays to reach.

Observation 2: $\bar{\sigma}_i^T \to \sigma_i^*$ as $T \to \infty$

1/2/ 1/2 -2 -1

Alberta Innovates

UNIVERSITY OF

New Regret Bound: $R_i^T = \sum \pi_i^{\sigma^*}(I) R_i^T(I) \le C^* \sqrt{T}, C^* \le C,$

where $\pi_i^{\sigma^*}(I)$ is the probability σ_i^* plays to reach I.

- - exploration parameter δ
- even faster iterations
- play in practice

Processing Systems Foundation

4. NEW SAMPLING ALGORITHM

Main Contribution: New MCCFR sampling algorithm, Average Strategy **Sampling**, that samples a subset of the current player's actions according to the player's average strategy.

Prob[sample action a] $\approx \max\{\delta, \overline{\sigma}_i^T(a)\}$

- focus effort more on where we will

5. EXPERIMENTAL RESULTS

2-Round No Limit Hold'em - Used 5 "bucket" card abstraction (but no betting abstraction). $20 \le k \le 40$ k = 36