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1. MOTIVATION
4. NEW SAMPLING ALGORITHM

3. NEW THEORETICAL RESULT

5. EXPERIMENTAL RESULTS

Goal: Find solutions to large 2-player zero-sum imperfect information games.

Main Contribution: New MCCFR sampling algorithm, Average Strategy 
Sampling, that samples a subset of the current player's actions according 
to the player's average strategy.
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2. BACKGROUND

NOTATION AND DEFINITIONS
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Example: Kuhn Poker (player 1 dealt Queen)
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We seek a Nash equilibrium profile (or as close to Nash as possible) 

Applications: Airport security, insulin scheduling for diabetes patients, 
                      beat humans at Texas Hold'em poker.

Counterfactual Regret Minimization (CFR) is a state-of-the-art iterative 
algorithm for computing an approximate Nash equilibrium.

“Vanilla” CFR (Original Version)
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Monte Carlo CFR (MCCFR): External Sampling

Traverse entire tree each iteration.
- slow iterations
- few iterations required
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Only traverse a sampled subtree.
- fast iterations
- many iterations required
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Bluff!

Flop

2-Round No Limit Hold'em - Used 5 “bucket” card abstraction (but no betting abstraction).
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Output:

Regret Bound:

Fact:

, the average strategy profile.
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New Regret Bound:

 where              is the probability      plays to reach

Observation 1: Regret only depends on counterfactual regret            at 
information sets     that      plays to reach.

Observation 2:

+1 +1+2 -1 -2 +1

+2 -1 -1-2
0.550.450.550.45

0.90.1
0.80.2

0.60.4
0.80.2

0.20.80.20.8
exploration parameter

- even faster iterations
- focus effort more on where we will 
  play in practice

   Chance Sampling     External Sampling    Outcome Sampling      Average Strategy     
               (CS)                            (ES)                             (OS)                     Sampling (AS)
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k actions
k = # chips

6n + 1 actions
n = total number of dice

 1 die vs. 1 die (n = 2)                  2 dice vs. 1 die (n = 3)

k = 36                20 ≤ k ≤ 40

                     : strategy profile, a function mapping each information set to a 
                       probability distribution over actions

          : expected utility for player i, assuming players play according to

exploitability  
    
                               maximum amount     loses to a worst-case opponent

A strategy profile    is an   -Nash equilibrium if exploitability

   : number of iterations

                                                              : regret for player 1 after     iterations
   
    : set of information sets for player i

                                                 
       
       counterfactual regret for player 1 at information set 

 is an   -Nash equilibrium.
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